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Abstract
We use symmetry vectors of nonlinear field equations to build alternative
Hamiltonian structures. We construct such structures even for equations which
are usually believed to be non-Hamiltonian such as heat, Burger and potential
Burger equations. We improve on a previous version of the approach using
recursion operators to increase the rank of the Poisson bracket matrices. Cole–
Hopf and Miura-type transformations allow the mapping of these structures
from one equation to another.

PACS numbers: 02.30.Jr, 02.20.-a, 02.30.-f, 03.65.Dd

1. Introduction

The standard way of constructing Hamiltonian theories starts from a Lagrangian by defining
the momenta and the Hamiltonian. The procedure is, of course, well known and may be found
in many textbooks. Nevertheless, it is interesting to attempt the construction of Hamiltonian
structures for systems of differential equations, without recourse to a Lagrangian which may
be either unknown or may even fail to exist, starting from just the equations of motion.
One of us [1, 2] devised a general technique for the construction of Hamiltonian structures
using symmetries and constants of motion of dynamical systems (see also [3]). In this paper,
we enrich this technique using in addition to recursion operators Cole–Hopf and Miura-type
transformations in order to raise the rank of the Poisson-bracket operators and to relate the
structures of different nonlinear equations, respectively.
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2. The Hamiltonian structure

Consider a system of nonlinear differential equations

u
(α)
t [x(a), t] = f (α)[u[xb, t]] (1)

where the Greek indices label the dependent variables (or fields) while the Latin indices are
used to denote the independent variables and ut ≡ ∂u/∂t . The field vector f (α)[u[xb, t]]
depends implicitly on time, t , through the dependent variables.

A Hamiltonian structure for (1) consists of an antisymmetric operator, J = J [x(a), x(b)]
and a Hamiltonian H such that J = J [x(a), x(b)] is the Poisson bracket for the dynamical
variables, which are in general non-canonical{F,G} =

∫
δFJδG dx (2)

where F and G are functional on the field’s variables and δ is the variational derivative of the
functionals. Additionally, J [x(a), x(b)] must be antisymmetric:{F,G} = −{G,F}

(3)

and must satisfy the Jacobi identity{R, {F,G}}
+

{F, {G,R}}
+

{G, {R,F}} ≡ 0 (4)

and must reproduce, in conjunction with the Hamiltonian H , the dynamical equation (1), i.e.,∫
JδH = f. (5)

It has been proved [1,2] that one solution to the problem of finding a Hamiltonian structure for
a given dynamical system is provided by one constant of the motion which may be used as the
HamiltonianH , and a symmetry vectorηwhich allows for the construction of a Poisson-bracket
operator J . The constant of motion and the symmetry vector satisfy

LfH = 0 (6)

(∂t + Lf )η = 0 (7)

respectively, where Lf is the Lie derivative along f . In addition, it is required that the
deformation K of H along η

K ≡ LηH (8)

is non-vanishing.
To simplify the notation we use only one dependent variable and one independent

variable. The extension to a larger number of variables is straightforward. The Poisson-
bracket operator J [x, y] is constructed as the antisymmetrized product of the flow vector f [x]
and the ‘normalized’ symmetry vector η/K

J [x, y] = 1

K
(f [x]η[y] − f [y]η[x]). (9)

The Poisson-bracket matrix constructed thus has rank 2 and is, therefore, singular. Adding
together two Poisson-bracket matrices constructed according to (9) will not increase the rank
but will just redefine the symmetry vector used. A method of increasing the rank of such a
Poisson bracket matrix is presented in [1]. In summary, the technique for increasing the rank
of the Poisson-bracket matrix consists of the following steps: consider two new symmetries
η2 and η3 such that they satisfy the following conditions:

∂tη2 = ∂tη3 = 0 (10)

Lη2H = Lη3H = 0 (11)

Lη2η3 = Lηη2 = Lηη3 = 0. (12)



Construction of alternative Hamiltonian structures for field equations 6137

The new Poisson-bracket matrix, J̃ [x, y], is then defined by

J̃ [x, y] = J [x, y] + η2[x]η3[y] − η2[y]η3[x]. (13)

This procedure can be repeated at will, producing an increase of two units in the rank of the
matrix each time it is performed.

3. The heat equation

To apply the procedure described in the previous section, we use the heat equation with a
periodic boundary condition. The heat equation for ω[x, t] subject to periodic boundary
conditions is

ωt [x, t] = ωxx[x, t]

ω[0, t] = ω[a, t]
(14)

and the functionω[x, t] should also satisfy the initial conditionω[x, 0] = f (x). Equation (14)
implies that all even derivatives of the field ω[x, t] are also subject to periodic boundary
conditions, i.e., ω(2n)[0, t] = ω(2n)[a, t] with n = 0, 1, 2, . . . .

The equation (14) has an integral of motion

H =
∫ a

0
ω[x, t] dx. (15)

One symmetry transformation for this equation is

η(0) = α[x, t]∂ω (16)

where α[x, t] is any solution of the equation (14). Take, in particular, α[x, t] = 1.
The integral of motion (15) has a non-vanishing deformation along η(0)

Lη(0) H =
∫ a

0

δH

δω[x, t]
η(0) dx = a. (17)

Following the above procedure we can construct a Poisson bracket structure for (14) (see [3])

J (0)[x, y] = ωxx[x, t] − ωyy[y, t]

a
. (18)

Another symmetry transformation for equation (14) is a dilatation symmetry defined by

η(D) = (bω[x, t] − 2tωxx[x, t] − xωx[x, t])∂ω (19)

where b is any real number. This symmetry transformation satisfies the conditions outlined in
section 2, for b �= −1. In particular, the deformation of (15) along η(D) is

Lη(D)H =
∫ a

0

δH

δω[x, t]
η(D) dx = (1 + b)H. (20)

We may now construct a second Poisson-bracket structure using this symmetry

J (D)[x, y] = ωxx[x, t]η(D)[y, t] − ωyy[y, t]η(D)[x, t]

(1 + b)H
. (21)

Another symmetry vector may be used for constructing a Poisson bracket structure, as we will
see in the next section, namely

η(2) = ε

2

(
t +

1

2
x2

)
. (22)

The corresponding Poisson-bracket structure is

J (2)[x, y] = ωxx[x, t]η(2)[y, t] − ωyy[y, t]η(2)[x, t]∫ a
0 η

(2)[x, t] dx
. (23)
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4. The recursion operators

The recursion operators [4–6] for the heat equation are

�1[ω] = D (24)

�2[ω] = tD +
x

2
(25)

�−1
1 [ω] = D−1 (26)

�−1
2 = exp(− x2

4t )√
t

D−1 exp( x
2

4t )√
t

. (27)

These operators satisfy the following equation (see [4, 5, 7])

(∂t + Lf )� = ∂t� +�′[f ] − f ′[�] +�[f ′] = 0 (28)

where the prime indicates the Frechet derivative.
Now we apply the operator (25) to the constant symmetry ε and obtain a family of

symmetries. The first four of them are

η(0) = (�2)
0 ε = ε (29)

η(1) = (�2)
1 ε = 1

2εx (30)

η(2) = (�2)
2 ε = ε

2

(
t +

x2

2

)
(31)

η(3) = (�2)
3 ε = ε

2

(
3tx +

x3

4

)
. (32)

Notice that the symmetries obtained, are also special solutions of the heat equation called the
‘heat polynomial’ [8] that are invariant with respect to the action of dilatation symmetry. Taking
into account the equation of motion (14) and the integral of motion (15), it is a straightforward
matter to prove that

L(�2)nεH =
∫ a

0
(�2)

nε dx = K (33)

where K = 0 if n is odd, and K �= 0 if n is even. On the other hand, we have

L(�2)nε(�1)
m(ωx) = −D(m+1)((�2)

nε) = 0 ⇔ m � n. (34)

From this relationship we get

Lf ((�2)
2ε) = −ε

2
. (35)

Furthermore, one may get the Jacobi identity (4) for the Poisson-bracket operator (9) by
using (35) to show that, in fact

J [x, y]Lf η[z] + J [y, z]Lf η[x] + J [z, x]Lf η[y] ≡ 0. (36)

Therefore, we may use (�2)
2ε for the construction of a Hamiltonian structure for

equation (14) as in (23).

5. Raising the rank of Poisson-bracket operators

The symmetries (�1)
2n(ωx) with m, n = 0, 1, 2 . . . satisfy the following equations:

∂t (�1)
2n(ωx) = 0 (37)

L(�1)2n(ωx)H = 0 (38)

L(�1)2n(ωx)(�1)
2m(ωx) = 0 (39)

L(�1)2n(ωx)ε = 0 (40)
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where we use the periodic boundary conditions for even derivatives of the field in (38).
Furthermore, for 2n > 2 we have

L(�1)2n(ωx)(�2)
2(ε) = 0. (41)

Keeping these properties and the conditions (10)–(12) in mind, we can raise the rank of the
Poisson-bracket structures (18) and (23) by defining

J (0)∞ = J (0) +
∞∑

m �=n=1

Anm(ω2n(x)ω2m(y)− ω2n(y)ω2m(x)) (42)

J (2)∞ = J (2) +
∞∑

m �=n=2

Bnm(ω2n(x)ω2m(y)− ω2n(y)ω2m(x)) (43)

where Anm and Bnm are real antisymmetric matrices.

6. The Cole–Hopf transformation

We have already introduced the heat equation (14), while the potential Burger and the Burger
equations are given by

ut [x, t] = uxx[x, t] + u2
x[x, t] (44)

and

vt [x, t] = vxx[x, t] + 2v2
x[x, t]v[x, t], (45)

respectively. The variables ω[x, t], u[x, t] and v[x, t] are related by the following
transformations [9–12]

ω[x, t] = F(u[x, t]) ≡ exp(u[x, t]) (46)

v[x, t] = B(u[x, t]) ≡ ux[x, t] (47)

v[x, t] = ωx[x, t]

ω[x, t]
. (48)

The recursion operators are mapped into

�[ω] = F ′�̃[u]F ′−1 (49)

�̂[v] = B ′�̃[u]B ′−1 = B ′F ′−1�[ω]F ′B ′−1 (50)

where F ′ = exp(u[x, t]) and B ′ = D are the Jacobian of the transformations (46) and (47),
respectively. Thus, the recursion operators are

�̃1[u] = exp(−u[x, t])D exp(u[x, t]) = D + ux[x, t] (51)

�̃2[u] = tD + tux[x, t] + 1
2x (52)

�̂1[v] = Dv[x, t]D−1 +D (53)

�̂2[v] = t (Dv[x, t]D−1 +D) + 1
2 (D

−1 + x). (54)

The symmetries vectors in the Burger and potential Burger equations are

ηv = B ′ηω = D exp(−u[x, t])ηω (55)

ηu = F ′ηω = exp(−u[x, t])ηω (56)

for any symmetry vector of the heat equation ηω. For instance, one symmetry vector for the
potential Burger equation (44) is

ηu = α[x, t] exp(−u[x, t])∂u (57)
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where α[x, t] is a solution of heat equation (14).
Applying the recursion operator �̃1[u] on (57) we have for n = 0, 1, 2 . . . :

�̃
(n)
1 [u]ηu = αnx[x, t] exp(−u[x, t])∂u. (58)

Note that these symmetries commute among themselves and in particular with
αxx[x, t] exp(−u[x, t]) = uxx[x, t] + u2[x, t]. Keeping in mind the general outline for the
construction of Hamiltonian structures with the help of one symmetry that does not deform
the Hamiltonian trivially, we get the following results for the potential Burger equation:

Ju[x, y] = ηω[y] exp(−u[y, t])ωxx[x, t] exp(−u[x, t])

−ηω[x] exp(−u[x, t])ωyy[y, t] exp(−u[y, t])/K (59)

Ju[x, y] = exp(−u[x, t])Jω[x, y] exp(−u[y, t]) (60)

where K is the deformation of the Hamiltonian H along the symmetry ηu, Jω[x, y] is a
Hamiltonian operator for heat equation (14). We used symmetry (57).

Furthermore, note the following relationships:

H [ω] =
∫
ω[x, t] dx ⇒ H [u] =

∫
exp(u[x, t]) dx (61)

LηωH [ω] =
∫

δH [ω]

δω[x, t]
ηω dx =

∫
ηω = K (62)

LηuH [u] =
∫

δH [u]

δu[x, t]
ηu dx =

∫
exp(u[x, t])ηu =

∫
ηω = K. (63)

Expression (60) is not altered if we include the terms that raise the rank of the Poisson-bracket
operator J∞[u] = exp(u[x, t])J∞[ω] exp(u[y, t]). Similarly, for the Burger equation we have

Jv[x, y] = −D exp(−u[x, t])Jω[x, y] exp(−u[y, t])D. (64)

7. Other examples

Consider the Krichever–Novikov (KN) equation [13, 14] for the field ψ[x, t]

ψt [x, t] = ψxxx[x, t] − 3

2

ψ2
xx[x, t]

ψx[x, t]
≡ f(1). (65)

It is not difficult to see that the following quantities are conserved:

H(1) =
∫

dx

ψ1[x, t]
(66)

H(2) =
∫

ψ[x, t]

ψ1[x, t]
dx. (67)

Considering the symmetry vectors, ψ[x, t] and ψ2[x, t], and the constant of motion H(1) as a
Hamiltonian gives the following Poisson-bracket structures:

J
(ψ)

(1) [x, y] = 1

−H(1)
(f(1)[x]ψ[y] − f(1)[y]ψ[x]) (68)

J
(ψ)

(2) [x, y] = 1

−2H(2)
(f(1)[x]ψ2[y] − f(1)[y]ψ2[x]). (69)

Using the operator M = −(D + ψ2[x,t]
ψ1[x,t] )D

1
2ψ1[x,t]D, we can then find the Poisson-bracket

structures for the Korteweg–deVries (KdV) equation

KdV[u[x, t]] ⇒ ut [x, t] = uxxx[x, t] + 6u[x, t]ux[x, t] (70)

J
(u)

(i) [x, y] = M[x]J (ψ)(i) [x, y]M∗[y]. (71)
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Note that these Poisson-bracket structures for the KdV equation are non-local. What we have
indirectly demonstrated is that, by means of Miura-type coordinate changes, the non-local
Poisson structures for KdV (71), can become local. Basically we have introduced the pseudo-
potential ψ[x, t] [15] for which this structure becomes local.

8. Conclusions

The method presented here may constitute an alternative to constructing a Hamiltonian
description of the system (1) without using a Lagrangian. We obtain infinite-range Poisson-
bracket structures taking advantage of the existence of an infinite group of symmetries, given
by the use of the Lenard-type recursion operator, when it exists.

The procedure outlined in the paper to raise the rank of the Poisson-bracket structure may
be viewed as the ‘inverse’ of the Dirac method. In fact, the Dirac method lowers the rank
of the Poisson brackets to turn them into Dirac brackets in which second-class constraints
commute with any function of the dynamical variables (they are Casimir functions for the
Dirac brackets), while this procedure raises the rank of the Poisson bracket operators thus
reducing the number of Casimir functions.

Once we have a Poisson-bracket operator for one equation, using a Miura-type
transformation we can obtain similar structures for other equations. The application of this
method to other hierarchies of equations that possess Lenard-type recursion operators similar
to KdV hierarchies, is direct and will be published elsewhere.
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